[0106] A. Wireless Short-Range Communication Networks

[0107] Short-range communication technologies provide communication solutions appropriate for many data applications, without the cost, traffic and legislative concerns of longer-range communication technologies. Short-range communication technologies include Bluetooth basic rate/enhanced data rate (BR/EDR), Bluetooth Low Energy (LE), IEEE 802.11 wireless local area network (WLAN), Wireless Universal Serial Bus (WUSB), ZigBee (IEEE 802.15.4, IEEE 802.15.4a), and near field communication technologies, such as radio frequency identification (RFID) and near field communication (NFC) technology that enable contactless identification and interconnection of wireless devices.

[0108] B. BluetoothTM Communication Technology

[0109] A procedure for forming connections between BluetoothTM devices is described in the BluetoothTM Specification, Version 4, Jun. 30, 2010. The BluetoothTM Baseband is the part of the BluetoothTM system that implements the Media Access Control (MAC) and physical layer procedures to support the connection formation, exchange of data information streams, and ad hoc networking between BluetoothTM devices. Connection formation may include inquiry, inquiry scanning, inquiry response, in addition to paging, page scanning, and page response procedures.

[0110] C. Near-Field Communication (NFC) Technology [0111] Near field communication technologies, such as radio frequency identification (RFID) technologies, comprise a range of RF transmission systems, for example standardized and proprietary systems for a large number of different purposes, such as product tagging for inventory handling and logistics, theft prevention purposes at the point of sale, and product recycling at the end of the life-cycle of the tagged product.

[0112] RFID transponders may be the passive type or the active type. A passive RFID transponder requires no internal power source to communicate with an RFID reader, and is only active when it is near an RFID reader that energizes the transponder with a continuous radio frequency signal at a resonant frequency of the antenna. The small electrical current induced in the antenna by the continuous radio frequency signal provides enough power for an integrated circuit in the transponder to power up and transmit a modulated response, typically by backscattering the continuous carrier wave from the RFID reader. A passive RFID transponder may include writable electrically erasable, programmable, read-only memory (EEPROM) for storing data received from the RFID reader, which modulates the continuous carrier wave sent by the RFID reader. Reading distances for passive RFID transponders typically range from a few centimeters to a few meters, depending on the radio frequency and antenna design. By contrast, active RFID transponders require a power source to receive and transmit information with an RFID reader. The RFID transponder may be affixed to or integrated with a mobile wireless device and the user may bring the RFID transponder on one device close to an RFID reader circuit in another mobile wireless device to allow near field communication between the devices. In example embodiments, both devices may have RFID reader circuits to read RFID signals from the other device.

[0113] In addition to RFID technologies, Near Field Communication (NFC) technology has recently evolved from a combination of existing contactless identification and interconnection technologies. NFC is both a "read" and "write"

technology. Communication between two NFC-compatible devices occurs when they are brought within close proximity of each other: A simple wave or touch may establish an NFC connection.

[0114] Near-field communication (NFC) technology communicates between two NFC Devices or between an NFC device and an NFC Tag via magnetic field induction, where two loop antennas are located within each other's near field, effectively energizing a wireless contact by forming an aircore transformer. An example NFC radio operates within the unlicensed radio frequency ISM band of 13.56 MHz, with a bandwidth of approximately 2 MHz over a typical distance of a few centimeters. The NFC radio may be affixed to a new wireless client device (STA) and the user brings the NFC radio on the device close to an access point (AP) or Registrar of the Network to allow near field communication between the devices.

[0115] NFC technology is an extension of the ISO/IEC 14443 proximity-card standard (incorporated herein by reference) for contactless smartcards and radio frequency ID (RFID) devices, which combines the interface of a contactless smartcard and a reader into a single device, and uses the ISO/IEC 18092 NFC communication standard (incorporated herein by reference) to enable two-way communication. An NFC radio may communicate with both existing ISO/IEC 14443 contactless smartcards and readers, as well as with other NFC devices by using ISO/IEC 18092. The ISO/IEC 18092 standard defines communication modes for Near Field Communication Interface and Protocol (NFCIP-1) using inductively coupled devices operating at the center frequency of 13.56 MHz for interconnection of computer peripherals. The ISO/IEC 18092 standard specifies modulation schemes, codings, transfer speeds and frame format of the RF interface, initialization schemes, conditions required for data collision control during initialization, and a transport protocol including protocol activation and data exchange methods.

[0116] The NFC Data Exchange Format (NDEF) specification, NFC Forum Data Exchange Format (NDEF) Specification, NFC ForumTM, 2006 (incorporated herein by reference), defines a common data format for NFC devices to exchange application or service specific data. An NDEF message is constructed of a number of NDEF records, with the first and the last record providing message begin and end markers. Between two NFC Devices, NDEF messages may be exchanged over the NFC Logical Link Control Protocol (LLCP) protocol, specified in NFC Forum Logical Link Control Protocol Specification, NFC ForumTM, 2009 (incorporated herein by reference). The NFC Connection Handover specification, NFC Forum Connection Handover Specification, NFC ForumTM, 2010 Jul. 7 (incorporated herein by reference), defines the exchange of NDEF messages between two NFC Devices in a negotiated handover to discover and negotiate alternative wireless communication technologies.

[0117] D. Wireless Memory Tag Technology

[0118] NFC devices may also be used for low power level wireless powering. As an example, a mobile wireless device may provide power wirelessly to a wireless memory tag. With wireless powering, a large memory and an ultra-low power wireless broadband transceiver embedded in the tag may be powered for wireless reading and writing of the memory in the tag. A special wireless powering mode may be used to keep high power transfer efficiency on during the whole data transfer session of the wireless memory operation. Power